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Reasoning as a mathematical habit of mind

MIKE ASKEW

Introduction
In this paperI look at different aspectsof mathematicalreasoning,and

arguethat we needto make surestudentsof all agesengagein a rangeof
mathematicalreasoning,particularly given the evidencethat teachingfor
reasoningis a powerful complementto teachingthat is more focusedon
skills and procedures.

A major report [1] published in the USA put forward a model of
mathematicalcompetencyas comprisingfive strandswoven together(this
metaphordeliberatelychosenon the basisof a rope beingstrongerthan the
sum of its strands): procedural fluency, strategic competence,adaptive
reasoning,conceptualunderstandingand productive disposition.Since the
publicationof this report,therehasbeengrowingconsensus,within theworld
of mathematicseducation,on the importanceof at leastsome,if not all of
thesestrands.Linked to this,England's2015NationalCurriculumfor Primary
Schools[2] has the statedaim of developingfluency, problemsolving and
reasoningand the languageof thesethreeproficienciesis increasinglyalso
being used when talking about the curriculum for Secondary Schools.

Curriculumsupportingdocumentsoftenpresenttheseproficienciesin the
order in which they are statedin the curriculum documentand that, along
with thepopularlyheldview thatfluency in basicarithmeticis neededbefore
studentscan engagein mathematicalreasoning,meansthat mathematical
reasoningis sometimestalkedabout,andenactedin classrooms,asthe icing
on thecakeof mathematicsteachingandlearning– somethinga few students
(themathematicallytalentedones)get to engagewith. A resultof this is that
somepupils thenexperiencefewer opportunitiesto engagein mathematical
reasoningthan their peers.I arguehere that an emphasison mathematical
reasoningis an educational right that all studentsare entitled to, that
reasoningis complementaryto proceduralfluency, not an outgrowth of it,
andthat ratherthanbeingsomeesotericway of thinking that only a minority
of studentscanengagein, mathematicalreasoningis achievableby the vast
majority of students.In making reasoningavailableand accessibleto most
students,not only will they deepentheir mathematicalunderstanding,they
mayalsogeta strongersenseof thepleasure ofmathematics,of theromance
of mathematics,to paraphrasethe wordsof the illustriouspreviouspresident
of the Mathematical Association, Alfred North Whitehead in [3].

Reasoning or arithmetic?
Before reading on, I invite you to consider whether each of the

following statements is true or false.

39 × 46 = 39 × 45 + 46

39 × 46 = 39 × 45 + 39
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Themathematicallyastute reader(asthereaderof this journaldoubtlessis!)
may invoke the associativelaw, reasoningthat
leading to , thus establishing thesecondstatementas true
(andconsequentlythat the first statementis false).Offering theseequations
to teachersand students,given that the numbersare sufficiently ‘ugly’ to
discouragecheckingby calculatingeachsideof theequation,a conversation
typically ensuesas to whether to ‘read’ as ‘forty-six groupsof
thirty-nine’ or as‘thirty-nine groupsof forty-six’, thusengagingparticipants
in somereasoningaboutthecommutativenatureof multiplication andwhen
it is usefulto invokeits use.Thereadingof ‘forty-six groupsof thirty-nine’
can lead to the awarenessthat if this is reducedto ‘forty-five groupsof
thirty-nine’ ( ), thento preservetheequality,anothergroupof thirty-
nine needs to be added, hence the second equation is true.

39 × 46 = 39 × (45 + 1)

39 × 45 + 39

39 × 46

39 × 45

Notice that in eachcase,reasoningasto whethereachstatementis true
or false is independentof any ability to carry out any of the calculations
presented.Now considerthe secondequationwithin a string of similar
examples:

3 × 5 = 3 × 4 + 3

39 × 46 = 39 × 45 + 39

328 × 18 = 326 × 17 + 326

The reasoningrequired to establishthat the first equation is true is no
different from that required to establishthe truth of the secondor third
statements.The last equationis adaptedfrom an itemon oneof England's
recentnationaltestsfor the endof primary school.At the time of writing,
students,on exit from primary school,sit three mathematicstests− one
arithmetic test and two ‘reasoning’ tests.The last questionon the 2016
second reasoning test gave the equation:

5542 ÷ 17 = 326

Studentswereaskedto show how they could usethis equationto find the
answerto , in otherwords,to apply the reasoningimplied in the
third examplein the string above.This was the most poorly answered
questionof all thequestionsacrossall threepapers,with only 26%of pupils
answeringit correctly.Giventhat thiswasthe final questionacrossall three
papers,the test setterspresumablythought it was the hardestitem on the
test: the low successrate would appearto supportthis. One might expect
that the low scorewas a consequenceof many studentssimply not getting
that far on the paper,but 79%actuallyattemptedan answer.I suspectthat
manyof thesetried to carryout somecalculation,but, if one canengagein
the sort of ‘reading’ and reasoningoutlined above, thenthe only real
challengethat the problempresentsis appreciatingthat
informs you that , and thento reasonthat is
must therefore be .

326 × 18

5542 ÷ 17 = 326
326 × 17 = 5542 326× 18
5542 + 326
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This examplegetsat the heart of the distinction in [4, p. 3] that the
psychologistsNunes,Bryant, Sylva and Barros make betweenarithmetic
(‘learninghowto dosumsandusingthis knowledgeto solveproblems’)and
mathematicalreasoning(‘learning to reasonaboutthe underlyingrelations
in mathematicalproblemsthey haveto solve’). Froma numberof research
studieswith youngchildrenNunesandcolleaguesarguethat being ableto
do arithmeticandbeingableto reasonmathematicallycannotbe treatedas
proxiesfor eachother andthatmathematicalreasoningneedsto beattended
to in its own right. They examinedthis by trackingstudentsin a five-year
long longitudinal study,concludingthat reasoningandarithmeticalabilities
contributeindependentlyto predictingprogressin learningmathematics,but
that of the two ‘mathematicalreasoningwas by far the strongerpredictor’
[5, p. 136] of later successand that teaching must addressimproving
reasoning skills as well as, and separately to, arithmetical skills.

A language of mathematical reasoning
If mathematicalreasoningis to play a morecentralanddistinct rolein

teachingand learning, then Ithink it helpsto bring someclarity to what it
might look like in classrooms.A search acrossthe mathematicseducation
literaturebringsup a rangeof termsinvolving reasoning,includingadditive
and multiplicative reasoning,statisticalreasoning,proportionalreasoning,
approximatereasoning,geometricreasoning,both positional andaxiomatic
and so on.

More concisely,[2, p. 99] describesthe aim of beingableto reasonin
the following terms: 

reasonmathematicallyby following a line of enquiry,conjecturing
relationshipsand generalisations,and developing an argument,
justification or proof using mathematical language.

Working with teachersI am often askedif reasoningis not simply part of
problemsolving,that, if studentsareworking on solvingproblems(genuine
ones,that is problemsto which they do not have animmediatesolution
method),then surely that mustinvolve someform of reasoning.I would
agree,but reasoningneedsto go beyondfinding an answerto a particular
problem.It needs,asin theNC definition above,to moveto thinking about
generality, and so problem solving is embedded within reasoning.
Reasoningis broaderthan finding a solutionto a particularproblem,since
reasoningis driven by the desireto ask ‘what is the generalmathematical
structure that this particular problem is only a single instantiation of?’

If we takeseekinggeneralityasthecoreof mathematicalreasoningthen
I find it helpful to attend to different types of reasoning.Two of these,
deductiveand inductivereasoning,arepartof thecanonof mathematicsand
needlittle introduction.But threeothers,abductive,analogicalandrelational
reasoning,are perhaps less often acknowledgedbut are important in
teaching and learning mathematics. Let us look at each of type. 
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Deductive reasoning
Magic squaresarea classicexampleof deductivereasoning:given the

sumof the rows, columnsanddiagonals,andsomecell entriesgiven, can
the othercells be completed?In [6], Arcavi developedan extensionto the
traditionalmagicsquareby allowing numbersto berepeated.So,given that
a numbercanbe usedmorethanonce,which of thesquaresin Figure1 can
form a magic square?

           

 3    2    4  

2  1  1  5  2  2 

Sum of 9 Sum of 6 Sum of 8

FIGURE 1: Which of these can be completed to make a magic square?

The secondexampleintroducesthe useof negativenumber,while the
third exampleraisesthe possibility of a solutionnot alwaysbeingpossible,
openingup inquiry into thenecessaryconditionsfor beingableto complete
a square.

Inductive reasoning
Take these four calculations

5 × 6 =

7 × 8 =

4 × 5 =

6 × 7 =

Presentedthus, they may provide studentswith an opportunity to practise
recall of multiplication bonds,but offer little opportunityfor mathematical
engagement beyond that. 

Now considerthe samecalculations(and their answers)in a different
order:

4 × 5 = 20

5 × 6 = 30

6 × 7 = 42

7 × 8 = 56
Asking learners,what do you notice?and What do you wonder?can

leadto themnoticing that theanswersincreaseby differencesof 10, 12, 14,
and to wondering if this patternwill continue.By simply re-orderingthe
calculations,inductivereasoningis invoked(in the more everydaysenseof
pattern spotting, than in the sense of proof by induction) raising a
mathematical awareness that could be explored further.
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Abductive reasoning
Largest-smallestdifferenceis a classicexampleof a task that invokes

abductive reasoning- noticinga repeatedconnection.Closeto, but notquite
the same,as inductive reasoning,abductive reasoningis basedin noticing
similarities and co-occurrences of phenomena.

Write down three digits 
1. Arrange the digits from largest to smallest as a single number
2. Arrange the digits from smallest to largest as a single number
3. Find the difference between the two numbers. 

Repeat with the answer 
What do you notice? What do you wonder? 
Here we see the complementaryrelationshipbetweenabductiveand

deductivereasoning.Trying out severalexamplesraisesthe possibility that
there is a generality,but establishingwhether or not the generality will
alwayshold is establishedby deductivereasoning.It is importantthateven
early in their experiencesof learningmathematicsstudentsget exposedto
theideathat,whenasked,‘Will thatalwayswork?’, that theanswer‘Well it
did the five times I tried it’ is not mathematically sufficient. 

Analogical reasoning
A mathematical answer to 27 divided by 6 is 4 remainder 3.

Beforereadingon, I invite you to think of a simple real-worldsituation
thatcanbemodelledby dividing 27 by 6but whereit makes sense,backin
the real world, to round the answer up to 5.

Asked to do this, peoplecome up with situationscomparableto 27
peoplegoing somewhere,bookingtaxis thatcancarry 6, andso needingto
book 5 taxis, or packing all of 27 eggs into boxesof 6. Whatever the
situationit is most likely that the contextchosenis somesort of ‘packing’
situationwhereone ‘container’ is not completelyfull, resultingin theneed
to round up the mathematical answer.

Researchhas shownthat expert problem-solversdo not always treat new
problemsfrom scratch,but, instead,‘match’ the problem analogouslyto other
similar problems that provide a solution image or approach[7]. Here, the
archetypaldivide-and-round-up-the-answeranalogy is to a ‘packing’ problem.
There is an extensivebody of researchinto the power of working with ‘core’
archetypalproblemsfor developingunderstandingof additiveandmultiplicative
structures, and I recommend anyone who is interested to read [8].

Relational reasoning
Consider the situation below (adapted from [9]).

• On Saturdaysome friends came to tea. We shareda
packet of biscuits, equally. 



REASONING AS A MATHEMATICAL HABIT OF MIND 7

• On Sunday I had another tea party. 
• A greater number of friends came around on Sunday.
• We shared,againequally,thesamenumberof biscuitsas

there were on Saturday. 

Did each personon Sundayeat more, less or the sameas eachdid on
Saturday? 

Evenvery youngchildrencanreasonthat everyoneon Sundaygetsless
to eat(working on theassumptionthat thesepeopleexist in a mathematical
universewhere no one is on a diet, gluten intolerant or gives up their
share!).Given that there are three possiblesituationsfor the numberof
friends on Sunday(fewer, same,more) and for the number of biscuits
(fewer, same, more), then there are nine possible differencesbetween
SaturdayandSunday,andin sevenof theseit is unambiguousasto how the
Sunday situation compares to Saturday.

As this exampleshows,reasoningaboutrelationsbetweenquantities-
relational reasoning- can be done without needingto know the actual
numerical values of the quantities.Indeed, arithmetical problem-solving
requirestherelationshipbetweenquantitiesto be figuredout beforeactually
working on the calculation.Attending too quickly to the actualquantities,
ratherthan the relationshipbetweenthen,can leadto erroneousreasoning,
as this example shows:

Two battery-operatedcars - one red, one blue -are travelling
equally fast around a track. 
The red car started first. 
When the red car had completed 9 laps, the blue car had
completed 3 laps. 
Whenbluecarhadcompleted15 laps,how manylapshadthe red
car completed? 

Offeredthis problem,manystudentsforeclosequickly to the answerof 45
laps - the various ratios betweenthe valuesgiven make this a seductive
answer– 3 : 9 as15 : 45 or 3 : 15 as9 : 45.Thecorrectanswerof 21,given
that the carsare travelling at the samespeed,andso red is always6 laps
aheadof blue,cannotbeestablishedfrom examiningthenumbers,only from
the information in the first sentence (often glossed over by the reader). 

The absence of reasoning in classrooms
Despitethe evidenceboth for the importanceof studentsengagingin

mathematicalreasoning,and for its importancein laterdevelopment, much
evidencepoints to a paucity of reasoningin mathematicslessons.Why
might this beso?It is beyondthescopeof this paperto explorein detail the
variety of reasonsfor the lack of attention to reasoning(not the least of
which is the climateof high-stakestestingto which schoolsaresubjected),
but two possibleconstraintsareworth touchingupon:theemotionalcostof
reasoning and the focus of planning. 
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A major researchprojectin theUSA [10] workedwith a groupof upper
primary and middleschoolteachersto designand implementa numberof
lessonsthat would havemathematicalreasoningat their heart.The teachers
cametogetherto discussthe mathematicaltasksforming the core of the
lessons,to work throughthe tasksandto cometo a commonunderstanding
of the purposeof the lessons,which was to promotereasoning.In all, 68
lessonswere subsequentlyenactedin classroomsand the researchteam
visited andobservedall theselessons.The main finding from the research
wasthatshortlyafter thestartof eachlesson,over two-thirdsof the lessons
quickly ‘declined’ (the researchers’term) into lessonsthat either simply
involvedstudentscarryingout routineprocedures(asa resultof the teacher
telling them what to do), working in ways that were non-systematicand
even, in somecases,studentsengagingin non-mathematicalactivity (for
example, colouring in diagrams).

Looking in more detail at the third of lessonswhere mathematical
reasoningwas maintained,the researchersidentified a numberof factors
commonacrosstheselessons,factors that included building on students’
prior knowledgeand providing an appropriateamountof time (too much
being as unproductiveas too little). One notablefactor for maintaininga
focuson reasoningwas evidenceof ‘sustainedpressurefor explanationon
meaning’.Now teachersoften, with good intent, want to makelearningas
pleasurableaspossible,so ‘sustainedpressure’soundslike theantithesisof
this, but the work of the Nobel prizewinner, Daniel Kahneman,points to
why such pressure might be necessary.

Kahnemanproposesa model of our thinking as being either ‘fast’ or
‘slow’ [11]. Fastthinking is thatwhich we do without havingto reflecton it
- knowing that seven timeseight is fifty-six or that tan is sine divided by
cosine.Slow thinking is moredeliberate;it is thekind of thinking we have
to engagein whendoingmathematicalreasoning.Overa numberof studies,
Kahnemanhas shown that moving from fast to slow thinking is often
accompaniedby a slight, but noticeable feeling of depression.The
significanceof this to teachingis that teachersrecognisethatmomentwhen
havinggivena classa challengingtask,theycan feeltheenergyin the room
changing,andnot in a positivedirection. Itseemsreasonableto assumethat
one result of many of the lessonsin Henningsenand Stein's research
declininginto routineprocedureswasa resultof thenegativeenergyarising
from studentsmoving into ‘slow’ thinking with someteachers‘easing’ the
classroomclimateby pointingoutwhatto do,whilst thoseteachersapplying
‘sustained pressure’ helped students to work through their resistance.

A second possible reason for limited attention to mathematical
reasoningin lessonsmayarisefrom whatteachersattendto in planning.The
researcherFerence Marton argues that in any teaching and learning
encounter,thereare ‘objects’ of learningcominginto being,andthat these
can either be directobjects or indirect objects [12]. Direct objects of
learningarethoseaspectsof lessonsthatstudentsareimmediatelyattending
to. Theyarewhat studentsmight say in responseto the question‘what did
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you do in maths today?’ - ‘We worked on subtraction’, ‘We solved
simultaneousequations’,andso on. Martonarguesthat,whetherintentional
or not, everydirect objectof learninginvokesa numberof indirect objects
of learning. For example, the student working through a page of
simultaneousequationsbut without muchsenseof where such equations
comefrom, or what the resultsmean,may cometo learn that mathematics
comprisesa numberof proceduresthat simply have to be committedto
memory.That learningmaynot have beenthedirect intentionof theteacher,
but is an indirect consequence of the direct object of learning worked on.

In my experience,teachers,whenplanningmathematicslessons,often
focus mainly on the direct object of learning - fractions, money, linear
graphsandso on. Tasksare thencollectedtogetherthat addressthe direct
object.While that might be thestartingfor planning,it is also importantto
ask whatthe indirect outcomesmight be of working on thosetasks- what
mathematicalactivity studentsare going to be engagingin as aresult of
working on the tasks? This is important in promoting mathematical
reasoning,as reasoningcannotbe taughtdirectly. The direct taskgiven to
studentsis only a startingpoint. Havingchosena task,we haveto think our
wayinto whatstudentsarelikely to doas aresultof engagingwith it, that is,
what indirect learning might come about through working on the direct
object. I recently visited Japanto observenot only a numberof Lesson
Study meetings(a form of professionaldevelopmentfor a teacherwhere
they observeand critique a carefully craftedlesson)but also a numberof
regularlessons.In the discussionfollowing eachof the lessons,a common
focus was on what had been anticipated that the students might do
mathematically,and whetheror not this cameabout in the courseof the
lesson.Anticipating and working with the mathematicalreasoningof the
studentswastreatedasmoreimportantthat thinking aboutwhat the teacher
had to do in the lesson. 

Reasoning as a habit of mind.
Another possiblereasonfor why reasoningmay get less attention in

lessonsis theperceptionthat is hasto be the focusof an entirelesson,and
given the amountof ‘content’ to cover, this may only be able to happen
occasionally.In [13], Cuoco,GoldenburgandMark describe mathematical
poweras a‘habit of mind’, so if we wantstudentsto reasonmathematically
then this needsto becomea habit of mind, and, like any habit, is best
developedlittle and often. Rather than the occasional‘inquiry’ lesson,
reasoningchains– a seriesof linked, short,activities– canengendersucha
habit of mind. 

We lookedatsuchareasoningchainearlierin discussingwhetheror not
was true: the two simpler but structurally

identical examples preceding this would move the conversationwith
studentsaway from thinking about calculatinganswersto discussingand
reasoningabout the underlying structure. That example was structured
around preserving the underlying structure whilst making the numbers

326 × 18 = 326 × 17 + 326
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involved appearto be more challenging.Anotherapproachis to presenta
series,a chain,of calculations,wheresubsequentanswerscanbe reasoned
about based on the previous example. For instance:

160 ÷ 16

320 ÷ 16

320 ÷ 32

Thereasoningherecouldgoalongthelinesof, giventhattheanswerto thefirst
calculationis easyto calculatementally,thenif thedividendis doubledbut the
divisor unchanged,then the answeris going to double. The third example
providesanopportunityto discusswhy doubling boththe dividendanddivisor
leavesthe answerunchanged,and exploring why this is not the casewith
multiplication.CathyFosnothaswritten aboutsuchchains,and I recommend
her work if you are interested to read more (see, for example, [14]). 

Conclusion
If reasoningis going to becomemore central to most mathematics

teachingand learning, thentherearesomeshifts thatneedto comeaboutin
lessons.Themostimportantshift is to moveawayfrom thinking thatgetting
answersto problemsis theend goalof the lesson.Answershaveto beseen
notastheendproductof a lesson,butasthebeginning,asanopportunityto
examinetheunderlyingmathematicalgenerality.That involvesa shift from
asking:

How to I teach students to answer this problem?
to 

What mathematicalreasoningdo I expectthemto engagein as a
result of working on this problem?

Currentlythebusinessof educationwith its focuson testresultsmaynot
beconduciveto suchshifts,but weshouldnot losesightof thebroaderaims
of education,aimsthat wereimportantfor JohnDewey,over80 yearsago,
and, in our internet age, may be even more important now:

‘While it is not thebusinessof education... to teacheverypossibleitem
of information,it is its businessto cultivatedeep-seatedandeffectivehabits
of discriminating tested beliefs from mere assertions,guesses,and
opinions.’ [15]. 
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